华侨大学2025研究生考试大纲:高等代数_学习网官网

华侨大学2025研究生考试大纲:高等代数_学习网官网

华侨大学高等代数2025研究生考试大纲已公布,具体内容请查看正文。

特别提醒:本大纲中考试内容及题型结构、考查范围、参考教材等内容仅供参考,命题时可能会有调整,请各位考生知悉;若对此大纲有疑问的,请直接咨询招生学院

招生学院: 数学科学学院

招生专业: 数学、系统科学

科目名称: 高等代数

一、考试形式与试卷结构

(一)试卷满分值及考试时间

本试卷满分为150分,考试时间为180分钟。

(二)答题方式

答题方式为闭卷、笔试。试卷由试题和答题纸组成;答案必须写在答题纸(由考点提供)相应的位置上。

(三)试卷内容结构

考试内容主要包括矩阵(行列式)、线性方程组、线性空间、线性映射、多项式、特征值、相似标准形、欧氏空间、二次型。

(四)试卷题型结构

1.计算题:大约75分,4道题;

2.证明题:大约75分,4道题。

二、考查目标

课程考试的目的在于测试考生对于《高等代数》的基本概念、基本知识、基本思想与方法的掌握情况以及综合运用(线性)代数技巧研究代数对象的结构和表示的能力。

三、考查范围或考试内容概要

1、矩阵:理解数域的概念,正确掌握矩阵的运算和运算法则,熟练掌握矩阵的初等变换这一矩阵论的核心内容和方法,掌握分块矩阵的运算,掌握矩阵的逆、矩阵的秩,掌握矩阵相抵的等价分类,化标准形的思想方法,理解行列式的归纳法定义,熟练掌握行列式的性质,熟练掌握计算行列式的基本方法,了解和应用Laplace定理,了解行列式的等价定义。

2、线性方程组:判断和证明列向量的线性关系,理解向量组的等价,向量组的线性相关,掌握证明向量组的秩的命题的方法,熟练掌握线性方程组的解的判断、计算和解的结构。

3、线性空间:理解线性空间的定义,从定义出发判断和证明向量组的线性关系,掌握一些重要的线性空间的基与维数,熟悉同构的思想,等价分类的思想,直和分解的思想。

4、线性映射:理解和掌握线性映射(变换)的概念,理解线性映射由基的像唯一确定及其应用;掌握两个线性空间之间的线性映射(变换)的全体在定义了加法、数乘(和乘法)运算后构成线性空间(代数);熟练掌握用核空间与像空间刻画单满线性映射,熟练掌握维数公式;学会在同构意义下线性映射的命题与矩阵的命题之间的转化;学会以上内容在具体例子的实现和计算。

5、多项式:掌握多项式全体作为线性空间的代数结构的运算法则;熟练掌握和应用带余除法定理;熟练掌握最大公因式的计算,互素的判别方法和基本性质;熟练掌握和应用因式分解定理,掌握不可约多项式的基本性质,了解重因式与重根的联系,掌握复系数与实系数多项式的标准分解式,掌握整系数多项式有理根的计算,Eisenstein判别法。

6、特征值:掌握特征值、特征向量、特征多项式、特征子空间、极小多项式的定义和基本性质;清楚零化多项式和极小多项式的关系,掌握Cayley-Hamilton定理;熟练掌握计算特征值与特征向量,可对角化的判定和计算。

7、相似标准形:了解多项式矩阵与矩阵多项式的关系,λ-矩阵的相抵与矩阵相似的关系,掌握行列式因子、不变因子、初等因子的概念与计算,掌握不变因子与Frobenius标准型的对应,初等因子组与Jordan标准形的对应,Jordan 标准形对应的不变子空间分解。

8、欧氏空间:掌握欧氏空间的度量概念与度量性质,掌握正交相似关系,掌握正交变换和正交矩阵的对应,对称变换与对称矩阵的对应,从矩阵的正交相似关系进一步掌握等价分类的思想。

9、二次型:掌握用非退化线性替换化二次型为标准形和规范形的方法,特别是正交线性替换法,掌握判断二次型的正定性的方法,从对称矩阵的合同关系理解等价分类的思想。

更多的考试大纲考研资料https://www.handebook.com/web/#/book/document

学习网官网:http://w.363322014.com/

希望对您有帮助,分享给朋友,点下面用搜索功能,找到你想要的!

下载考研资料

关键词:[db:关键字]

圣考研网购买